Prediction of breast cancer case/control status from rare CHEK2 sequence variants

Sean V. Tavtigian, PhD Department of Oncological Sciences Huntsman Cancer Institute University of Utah School of Medicine

December 10, 2010

Case-control mutation screening

ATM and CHEK2

Case-control mutation screening

ATM and CHEK2

Gene classes: risk and frequency

HUNTSMAN CANCER INSTITUTE UNIVERSITY OF UTAH

Case-control mutation screening

ATM and CHEK2

Case-Control Mutation Screening

- Intended for identification/ validation/ characterization of intermediate-risk susceptibility genes.
- Requires epidemiologically sound case-control series
- All subjects are mutation screened across the coding exons (and proximal splice junctions) of target genes. The lab is blind to the status of individual samples.
- Analysis:

Summed frequency of truncating variants in cases vs. controls.

In silico grading of rare missense substitutions followed by a trend test to compare the *frequency distributions of the graded missense substitutions* in cases vs. controls.

Analysis of rare missense substitutions:

Distribution of risk in the GVGD plane

Tavtigian et al. Human Mutation. 29: 1342-1354, 2008

Case-control mutation screening

ATM and CHEK2

Data collection for a meta-analysis of rare ATM variants

Study	Reference	Cases	Controls	Total	Cases selection	Geographic origin
1 2	Fitzgerald et al. 1997 Teraoka et al. 2001	401 142	202 81	604 223	Early onset Early onset	>90% Caucasian Not collected
3	Sommer et al. 2003	90	90	180	Unselected	89% Caucasian
4	Thorstenson et al. 2003	270	52	322	Family history	Austrian
5	Renwick et al. 2006	443	521	964	Family history	>97% Caucasian
6	Hirsch et al. 2007	37	95	132	Unselected	African American
7	Soukupova et al. 2008	161	183	344	Early onset + FH	Czech
8	Regensburg- kConFab	364	362	726	Family history	>95% Caucasian
9a	IARC- BCFR	392	413	805	Early onset	European
9b	IARC- East Asian	231	245	476	Early onset	Asian
	'True' case-control subtotal	2,531	2,244	4,775		

Tavtigian et al. *AJHG* **85**: 427-446, 2009

Analysis of ATM case-control mutation screening data Rare variants only Missense analysis limited to the FAT-kinase region

	Cases	Controls	OR*	[95% CI]	P-value
Non-carriers	2,505	2,235	1.00	[ref]	
Truncating variants	26	10	2.32	[1.12-4.83]	0.024

Towards replication of the ATM results: WECARE study Overall analysis

ATM variant classification	Case subjects with dose estimates† (n = 606)	Control subjects with dose estimates† (n = 1200)	RR (95% CI)
All variants, bro	badly		
Wild type	223	418	1.0 (referent)
Silent	78	134	1.1 (0.8 to 1.6)
Missense	68	113	1.2 (0.8 to 1.8)
Splicing	4	14	0.7 (0.2 to 2.4)
Truncation	11	6	2.8 (0.9 to 8.9)
Common‡	308	655	0.8 (0.6 to 1.0)
Missense varia classified u	nts sing SIFT§		
Wild type	223	418	1.0 (referent)
Tolerated	31	66	0.9 (0.5 to 1.5)
Deleterious	37	46	1.7 (0.9 to 2.9)

Towards replication of the ATM results: WECARE study Stratified by radiotherapy exposure

ATM variants	Radiation exposure, Gvt	Case subjects (n = 606)	Control subjects (n = 1200)	BR‡ (95% CI)	RR§ (95% CI)
All variants, broad	dly		(= 1200)		
Wild type	0 0.01–0.99 ≥1.0	112 57 54	72 177 169	1.0 (referent) 1.1 (0.7 to 1.6) 1.1 (0.7 to 1.7)	1.0 (referent) 1.1 (0.7 to 1.6) 1.1 (0.7 to 1.7)
Silent	0 0.01–0.99 ≥1.0	38 25 15	29 59 46	1.1 (0.6 to 2.0) 1.3 (0.7 to 2.2) 1.0 (0.5 to 2.0)	1.0 (referent) 1.1 (0.5 to 2.4) 0.9 (0.4 to 2.2)
Splicing	0 0.01–0.99 ≥1.0	0 3 1	2 6 6	 1.5 (0.4 to 6.5) 0.4 (0.0 to 3.6)	1.0 (referent)
Truncation	0 0.01–0.99 >1.0	6 3 2	3 3 0	1.6 (0.3 to 8.6) 2.9 (0.5 to 16.3)	1.0 (referent) 1.7 (0.2 to 19.3)
Rare missense, stratified by SIF	-110 -T	_	Ŭ		
Tolerated	0 0.01–0.99 ≥1.0	12 9 10	16 27 23	0.7 (0.3 to 1.7) 1.1 (0.4 to 2.7) 1.3 (0.6 to 3.2)	1.0 (referent) 1.6 (0.5 to 5.2) 1.8 (0.6 to 5.8)
Deleterious	0 0.01–0.99 ≥1.0	14 12 11	14 17 15	0.6 (0.2 to 1.3) 2.8 (1.2 to 6.5) 3.3 (1.4 to 8.0)	1.0 (referent) 5.3 (1.6 to 17.3) 5.8 (1.8 to 19.0)

Bernstein et al. JNC/ 102: 475-483, 2010

Case-control mutation screening of CHEK2 Study characteristics

Age	Cases	s (%)	Contr	ols (%)
≤30	106	(8.1%)	66	(6.0%)
31-35	322	(24.7%)	171	(15.4%)
36-40	434	(33.3%)	231	(20.8%)
41-45	441	(33.8%)	199	(17.9%)
46-50	0	(0.0%)	230	(20.7%)
51-55	0	(0.0%)	212	(19.1%)
TOTAL	1,303	(100.0%)	1,109	(100.0%)

A. By Age

B. By race/ ethnicity

Race/ Ethnic group	Cases	s (%)	Contr	ols (%)
Caucasian	843	(64.7%)	956	(86.2%)
East Asian	204	(15.7%)	70	(6.3%)
Latina	158	(12.1%)	47	(4.2%)
Recent African Ancestry	98	(7.5%)	36	(3.2%)
TOTAL	1,303	(100.0%)	1,109	(100.0%)

Case-control mutation screening of CHEK2 Results

	Cases	Controls	OR*	[95% CI]	P-value
Non-carriers	1,242	1,089	1.00	[ref]	
Any truncating variant	17	3	6.18	[1.76-21.8]	0.005
Any rare missense	44	17	2.20	[1.20-4.01]	0.010

*Adjusted for study center, age, and ethnicity

Case-control mutation screening of CHEK2 Results

	Cases	Controls	OR*	[95% CI]	P-value
Non-carriers	1,242	1,089	1.00	[ref]	
Any truncating variant	17	3	6.18	[1.76-21.8]	0.005
Any rare missense	44	17	2.20	[1.20-4.01]	0.010
Stratified rare missense	10		1 20		•
CU C1 F	12	9	1.39	[0.55-3.56]	
C15	14	5	1.82	[0.62-5.34]	
C25	7	2	2.47	[0.45-13.5]	
C35	1	0			
C45	0	0			
C55	1	0			
C65	9	1	8.75	[1.06-72.2]	•
					0.0055

*Adjusted for study center, age, and ethnicity

Case-control mutation screening

ATM and CHEK2

CHEK2 Prediction: Truncating variant data

Nucleotide	Amino acid	Cases	Controls
c.283C>T	p.R95X	1	0
c.405delA	p.K135fs	1	0
c.823G>T	p.E275X	1	0
c.1100delC	p.T367fs	13	3
c.1138delCT	p.L380fs	1	0
c.1263delT	p.L421fs	1	0
c.1528C>T	p.Q510X	1	0

From a total of 16 predictions: Only 2 predictions included all of the truncating variants. One additional prediction included the nonsense substitutions.

It's appropriate to include all of them as a matter of course.

CHEK2 Prediction: Missense substitution data

Number of variants called

All	2
Except T+SJVs	3
& except doubles	8
Fewer	2

Nucleotide	Amino acid	Cases	Controls	Race/ ethnicity
c.14C>T	p.S5L	2	1	
c.74T>C	p.V25A	1	0	
c.254C>T	p.P85L	1	3	
c.349A>G	p.R117G	3	1	1/4 Latina
c.410G>A	p.R137Q	1	0	
c.470T>C	p.I157T	2	1	
c.538C>T	p.R180C	3	0	East Asian, Af Am
c.539G>A	p.R180H	0	1	
c.575C>T	p.S192L	1	0	East Asian
c.663C>G	p.I221M	1	0	Latina
c.688G>T	p.A230S	0	1	
c.715G>A	p.E239K	2	0	
c.727T>C	p.C243R	0	1	
c.751A>T	p.I251F	0	1	
c.911T>C	p.M304T	1	0	
c.917G>C	p.G306A	1	0	Latina
c.931G>A	p.D311N	1	0	
c.967A>C	p.T323P	1	0	
c.1036C>T	p.R346C	3	0	1/3 East Asian
c.1054A>T	p.N352Y	1	0	
c.1111C>T	p.H371Y	2	1	East Asian
c.1216C>T	p.R406C	1	0	
c.1253T>G	p.F418C	1	0	
c.1276C>T	p.P426S	1	0	
c.1312G>T	p.D438Y	2	2	
c.1313A>G	p.D438G	1	0	
c.1336A>G	p.N446D	0	1	
c.1343T>G	p.1448S	7	2	AfAm
c.1427C>T	p.T476M	1	0	Latina
c.1451C>T	p.P484L	1	0	Latina
c.1534C>G	p.L512V	1	0	Latina
c.1556G>T	p.R519L	0	1	
c.715G>A + c.1037G>A	p.E239K + p.R346H	1	0	
c.1182A>T + c.1343T>G	p.E394D + p.I448S	1	0	Af Am

CHEK2 Prediction Results: Analysis

• Odds ratio:

Predicted most pathogenic 3rd of missense substitutions vs most benign 3rd of missense substitutions.

OR ≤ 1.0	4 methods
1.0 < OR ≤ 2.0	2 methods
2.0 < OR < 4.5	5 methods
OR = 4.5	Align-GVGD
OR > 4.5	4 methods

Linear regression:

Regress predicted probability pathogenic for each variant against case/ control status of each subject. Report 1-sided P-value.

P = 1.04 methods1.0 > P > 0.056 methods0.05 > P > 0.022 methodsP = 0.021Align-GVGDP < 0.024 methods

CHEK2 Prediction Results: Correlation

• Five methods beat Align-GVGD in either the OR or LR tests. Here are their pairwise correlations.

	AC	GVGD		Method	1	Me	ethod2	Method	3 Me	thod 4	Ν	Method 5
Metho	d 1 🗌	0.49										
Metho	d 2	0.75		0.51								
Metho	d 3	0.66		0.73			0.80					
Metho	d 4	0.58		0.65			0.76	0.92				
Metho	d 5	0.54		0.65			0.76	0.76	0.	.80		
Metho	d 6	0.42		0.61			0.58	0.80	0.	.69		0.74
				AGVGD	M6		M1	M2	МЗ	M4		M5
HGVS_aa	case	con		0_tert	4_Te	rt	5_Tert	6_Tert	8_Tert	11_Tert		15_Tert
\$	\$	\$	¢	\$		\$	\$	\$	\$		\$	\$
p.R137Q	1	0		0	0		1	0	0	0		2
p.R180H	0	1		0	2		1	0	1	0		1
p.S192L	1	0		1	1		2	0	1	0		1
p.C243R	0	1		0	1		2	0	2	1		1
p.G306A	1	0		0	2		2	2	2	2		2
p.T323P	1	0		0	2		1	2	2	2		2
p.D438Y	2	2		2	1		0	2	1	1		0
Ave tertile				0.43	1.2	9	1.29	0.86	1.29	0.	86	1.29

CHEK2 Prediction Results: Interesting variants

• Maybe relatively pathogenic, concordant prediction:

					Case>2x Con	Case>2x Con
					Severe 1/3	benign 1/3
HGVS_nt	HGVS_aa	case	con			
	\$	\$	\$	\$		
c.349A>G	p.R117G	3	1	P&con	12	1
c.917G>C	p.G306A	1	0	P&con	10	2
c.1054A>T	p.N352Y	1	0	P&con	15	1
c.1253T>G	p.F418C	1	0	P&con	13	1
c.1276C>T	p.P426S	1	0	P&con	13	1

• Maybe relatively pathogenic, lots of discord:

1	▼	▼		▼		
c.74T>C	p.V25A	1	0	P&dis	1	12
c.663C>G	p.I221M	1	0	P&dis	2	12
c.931G>A	p.D311N	1	0	P&dis	2	6
c.1534C>G	p.L512V	1	0	P&dis	1	11

CHEK2 Prediction Results: Interesting variants

• Maybe relatively neutral, concordant prediction:

					Con>Case	C	Con>Case
					Severe 1/3	b	penign 1/3
HGVS_nt	HGVS_aa	case	con				
	\$	\$	\$	\$			
c.254C>T	p.P85L	1	3	N&con	2	2	7
c.539G>A	p.R180H	0	1	N&con	2	2	7
c.688G>T	p.A230S	0	1	N&con	()	7
c.1336A>G	p.N446D	0	1	N&con	1	1	15
c.1556G>T	p.R519L	0	1	N&con	2	2	7

• Maybe relatively neutral, lots of discord:

c.751A>T	p.I251F	0	1	N&dis	10	1

CHEK2 Prediction Results: Interesting variants

• Massive confusion:

					Case>2x Con	Con>Case	Case>2x Con	Con>Case
					Severe 1/3	Severe 1/3	benign 1/3	benign 1/3
HGVS_nt	HGVS_aa	case	con					
		÷	\$	\$				
c.715G>A	p.E239K	2	0	discord	5		7	
c.727T>C	p.C243R	0	1	discord		7		4
c.1427C>T	p.T476M	1	0	discord	6		4	
c.1451C>T	p.P484L	1	0	discord	7		4	

Power calculation (from Align-GVGD)

Study scale ¤	Single genes [#]	Whole pathways* #	Whole exome†
д	д	д	д
Alpha¤	0.05 ¤	0.0005¤	2.5 x 10 ⁻⁶ ¤
Beta ¤	0.80 ¤	0.80 ¤	0.80 ¤
ц	д	ц	д
rMSs alone ¤	1,975 ¤	4,700 ¤	7,725 ¤
T+SJVs alone ¤	1,425 ¤	3,400 ¤	5,600 ¤
<u>rMSs</u> plus T+SJVs [⊭]	<mark>850 ¤</mark>	2,025 ¤	3,350 ¤

Thanks to...

International Agency for Research on Cancer (IARC) Florence Le Calvez-Kelm **Fabienne Lesueur** Graham Byrnes Francesca Damiola Geoffroy Durand Nathalie Forey Sandrine McKay-Chopin Tu Nguyen-Dumont Nivonirina Robinot Maxime Vallée Catherine Voegele

Breast CFR PIs

Irene Andrulis Esther John John Hopper Melissa Southey

University of Utah Ken Boucher Mia Hashibe Alun Thomas